Zero forcing number of degree splitting graphs and complete degree splitting graphs
نویسندگان
چکیده
منابع مشابه
Domination in Degree Splitting Graphs
Let G = (V, E) be a graph with V = S1 S2 ...,St T where each Si is a set of vertices having at least two vertices and having the same degree and T = V Si. The degree splitting graph of G is denoted by DS(G) is obtained from G by adding vertices w1, w2, ..., wt and joining wi to each vertex of Si (1 i t). Let the vertices and the edges of a graph G are called the elements of G. In this...
متن کاملOn the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملZero forcing number of graphs
A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set in G. In the present paper, we study the forcing number of various classes o...
متن کاملAnti-forcing number of some specific graphs
Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...
متن کاملCharacter Degree Graphs That Are Complete Graphs
Let G be a finite group, and write cd(G) for the set of degrees of irreducible characters of G. We define Γ(G) to be the graph whose vertex set is cd(G) − {1}, and there is an edge between a and b if (a, b) > 1. We prove that if Γ(G) is a complete graph, then G is a solvable group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Universitatis Sapientiae, Mathematica
سال: 2019
ISSN: 2066-7752
DOI: 10.2478/ausm-2019-0004